Preview

Chebyshevskii Sbornik

Advanced search

The history of mechanical resonance – from initial studies to autoresonance

https://doi.org/10.22405/2226-8383-2022-23-1-269-292

Abstract

The paper traces the historical development process of one of the most important concepts of the mechanical oscillations theory – resonance, starting from the XVII century to the present day. It is noted that resonance is of great theoretical and practical importance, but there is no sufficiently strict and comprehensive definition for this term. The prehistory of resonance is mentioned and the initial studies associated with the works of Galileo Galilei, who first described
resonance using the example of an ordinary pendulum, and Christiaan Huygens, who studied the phenomenon of sympathetic resonance using the example of two pendulums on a common beam support, are discussed. The leading role of orbital resonances in the XVIII-XIX centuries, that indicate the evolutionary maturity of the Solar system, is noted, and the internal resonances in terrestrial mechanics are analyzed using the example of double and spherical pendulums. The classical harmonic resonance is analyzed in detail, and it played a significant role in technology.
The harmful role of resonance is demonstrated by the example of catastrophes with bridge structures. In addition, a classification of various types of resonance, which was formed in the XIX-XX centuries, is given. The term "autoresonance"associated with the name of A. A.
Andronov was the last step in this chain. Autoresonance made it possible to effectively swing the system using feedbacks, thereby adapting the driving forces to the properties of the system itself.
Several illustrative examples of autoresonance in pendulum systems are given. In conclusion, it is noted that autoresonances gradually began to take a serious place in robotics and biomechanics, and their use turned out to be the most important step into the world of optimal motion modes.

About the Authors

Alexey Sergeevich Smirnov
Peter the Great St. Petersburg Polytechnic University; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Russian Federation


Boris Aleksandrovich Smolnikov
Peter the Great St. Petersburg Polytechnic University; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Russian Federation

candidate of physical and mathematical sciences, associate professor



References

1. Brown, E. W. 1932, Elements of the theory of resonance, Cambridge, at the University press, 60 p.

2. Smirnov, A. S. and Smolnikov, B. A. 2018, “Resonance oscillations control in the nonlinear mechanical systems”, Transactions of seminar “Computer Methods in Continuum Mechanics” 2016-2017, pp. 23-39.

3. Smolnikov, B. A. and Smirnov, A. S. 2021, “The history of resonance – from simple resonance to autoresonance”, The Ninth Polyakhov’s Reading, Proceedings of the International Scientific Conference on Mechanics, March 9-12, 2021, Saint-Petersburg, Russia, pp. 457-459.

4. Frova, A. and Marenzana, M. 2006, Thus spoke Galileo: the great scientist’s ideas and their relevance to the present day, Oxford University Press, 493 p.

5. Jones, M. D. and Flaxman, L. 2009, The Resonance Key New Page Books: Exploring the Links Between Vibration, Consciousness, and the Zero Point Grid, New Page Books, 2009, 256 p.

6. Fradkov, A. L. 2003, Cybernetical Physics, St. Petersburg, Nauka, 208 p.

7. Galiley, G. 1964, Selected Works, V. 2, Moscow, Nauka, 572 p.

8. Pikovsky, A., Rosenblum, M. and Kurths, J. 2001, Synchronization. A universal concept in nonlinear sciences, Cambridge, Cambridge University Press, 411 p.

9. Oeuvres compl`etes de Christiaan Hugens, T. 17. 1967, Amsterdam, Swets & Zeitlinger N. V., 552 p.

10. Blekhman, I. I., 1981, Synchronization in nature and technology, Moscow, Nauka, 352 p.

11. Alfven, H. and Arrhenius, G. 1976, Evolution of the solar system, Washington D. C., Scientific and Technical Information Office, National Aeronautics and Space Administration, 599 p.

12. Smolnikov, B. A. 2014, Mechanics in the history of science and society, Moscow, Izhevsk, RCD, 608 p.

13. Roy, A. 1978, Orbital motion, New York, Wiley, 489 p.

14. Appel, P. 1960, Theoretical Mechanics, V. 2, Dynamics of the system, Analytical mechanics, Moscow, Fizmatlit, 487 p.

15. Stoyanovskiy, S. M. and Smirnov, A. S. 2018, “Evolutionary dynamics of pendulum systems with several degrees of freedom”, Week of Science SPbPU, The best reports, pp. 224-229.

16. Bernoulli, D. 1774, “Commentatio physico-mechanica specialior de motibus reciprocis compositis. Multifariis nondum exploratis, qui in pendulis bimembribus facilius observari possint in confirmationem principii sui de coexistentia vibrationum simpliciorum”, Novi commentarii Academiae Scientiarum Imperialis Petropolitanae, T. 19, 260-284 pp.

17. Smirnov, A. S. and Smolnikov, B. A. 2020, “Double pendulum research history”, History of Science and Engineering, no. 12, pp. 3-12.

18. Loytsyansky, L. G. and Lurie, A. I. 1934, Theoretical mechanics, V. 3, Dynamics of a non-free system and the theory of oscillations, Moscow, Leningrad, ONTI, 625 p.

19. Smirnov, A. S. and Smolnikov, B. A. 2019, Spherical pendulum mechanics, St. Petersburg, Polytech-press, 266 p.

20. Puiseux, V. A. 1842, “Sur le mouvement d’un point mat´eriel pesant sur une sph`ere”, Journal de Math´ematiques pures et appliqu´ees, s. 1, v. 7, pp. 517–520.

21. Krylov, A. N. 1949, Collection of works, In 12 vol., Vol. 3, P. 1, Moscow, Leningrad, publ. house of Academy od Sciences of the USSR, 350 p.

22. Timoshenko, S.P. 1937, Vibration Problems in Engineering, New York, D. Van Nostrand Company, 470 p.

23. Butikov, E. I., Bykov, A. A. and Kondratiev, A. S. 1982, Physics for university applicants, Moscow, Nauka, 608 p.

24. Merkin, D. R. 1987, Introduction to the theory of stability of motion, Moscow, Nauka, 304 p.

25. Biderman, V. L. 1980, The theory of mechanical oscillations, Moscow, Vyshaya shkola, 480 p.

26. Panovko, Ya. G. and Gubanova, I. I. 1979, Stability and oscillations of elastic systems, Moscow, Nauka, 384 p.

27. Strength, stability, oscillations. Handbook in three volumes, V. 3, 1968, ed. by Birger, I. A. and Panovko, Ya. G, Moscow, Mashinostroenie, 567 p.

28. Panovko, Ya. G. 1991, Introduction to the theory of mechanical oscillations, Moscow, Nauka, 256 p.

29. Krupenin, V. L. 2013, “On the number of periodic modes of motion of nonlinear vibration systems with periodic polyharmonic oscillations”, Vestnik nauchno-tekhnicheskogo razvitiya, no. 4 (68), pp. 14-19.

30. Olkhovsky, I. I. 1974, Theoretical mechanics course for physicists, Moscow, Moscow University, 569 p.

31. Panovko, Ya. G. 1976, Foundations of the applied theory of oscillations and impact, Leningrad, Mashinostroenie, 320 p.

32. Chechurin, S. L. 2014, Parametric resonance – pain and joy, St. Petersburg, izd-vo SPbGPU, 67 p.

33. Mandelstam, L. I. 1972, Lectures on the theory of oscillations, Moscow, Nauka, 470 p.

34. Hill, G. W. 1886, “On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon”, Acta Mathematica, vol. 8, pp. 1-36.

35. Kovacic, I., Rand, R. and Sah, S. M. 2018. “Mathieu’s Equation and its Generalizations: Overview of Stability Charts and their Features”, Applied Mechanics Reviews, vol. 7. no. 2, 020802.

36. Ince, E. 1927, “Research Into the Characteristic Numbers of Mathieu Equation”, Proceedings of the Royal Society of Edinburgh, 46, pp. 20–29.

37. Strutt, M. J. O. 1928, “Zur Wellenmechanik des Atomgitters”, Annalen der Physik, 391 (10), pp. 319–324.

38. Smirnov, A. S. and Degilevich, E. A. 2021, Oscillations of chain systems, St. Petersburg, Polytech-press, 246 p.

39. Routh, E. J. 1892, A treatise on the dynamics of a system of rigid bodies, P. 2, London, New York, Macmillan, 431 p.

40. Taylor, R. and Phillips, R. 1831, “Fall of the Broughton suspension bridge, near Manchester”, The Philosophical Magazine, Or Annals of Chemistry, Mathematics, Astronomy, Natural History, and General Science, vol. 9. no. 53, pp. 384–389.

41. “Rapport de la commission d’enquˆete nomm´ee par arrˆet´e de M. le pr´efet de Maine-et-Loire, en date du 20 avril 1850, pour rechercher les causes et les circonstances qui ont amen´e la chute du pont suspendu de la Basse-Chaine”, 1850, Annales des ponts et chauss´ees, no. 237, tome XX,

42. pp. 394–411.

43. Bunin, M. S. 1986, The Bridges of Leningrad. Essays on the history and architecture of the bridges of St. Petersburg – Petrograd – Leningrad, Leningrad, Stroyizdat, 280 p.

44. Krylov, A. N. 1936, Vibration of ships, Leningrad, Moscow, ONTI NKTP USSR, 442 p.

45. Kochedamov, V. I. 1958, The Bridges of Leningrad, Leningrad, Moscow, Iskusstvo, 60 p.

46. Ziegler, H. 1968, Principles of Structural Stability, Waltham, Massachusetts, Toronto, London, Blaisdell Publishing Company, 150 p.

47. Bishop, R. Vibration, Cambridge, at the University press, 1965, 120 p.

48. Billah, K. Y. and Scanlan, R. H. 1991, “Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks”, American Journal of Physics, 59 (2), pp. 118–124.

49. Andronov, A. A, Vitt, A. A. and Khaikin, S. E. 1981, The Theory of Oscillations, Moscow, Nauka, 918 p.

50. Machine dynamics and control, Directory, 1988, ed. by Kreinin, G. V., Moscow, Mashinostroenie, 240 p.

51. Astashev, V. K. 2011, “On new directions of using the resonance phenomenon in machines”, Vestnik nauchno-tekhnicheskogo razvitiya, no. 8 (48), pp. 10-15.

52. Fradkov, A. L. 1999, “Analysis of physical systems by means of feedback”, Automation and Remote Control, no. 3, pp. 213–230.

53. Fradkov, A. L. 1999, “Exploring nonlinearity by feedback”, Physica D., vol. 128, no. 2–4, pp. 159–168.

54. Magnus, K. 1982, Oscillations: an introduction to the study of oscillatory systems, Moscow, Mir, 304 p.

55. Smirnov, A. S. and Smolnikov, B. A. 2016, “Controlling the sway process of the swing”, Week of Science SPbPU, Materials of the scientific forum with international participation, Institute of Applied Mathematics and Mechanics, pp. 106-109.

56. Smirnov, A. S. and Smolnikov, B. A. 2021, “Collinear control of single-link manipulator motion with variable gain”, Youth and Science: actual problems of fundamental and applied research, Materials of the IV All-Russian scientific conference of students, postgraduates and young scientists, Komsomolsk-on-Amur, April 12-16 2021, vol. 2, pp. 70-73.

57. Merkin, D. R. and Smolnikov, B. A. 2003, Applied problems of rigid body dynamics, St. Petersburg, SPbSU publ., 534 p.

58. Smolnikov, B. A. 1991, The problems of mechanics and robotoptimization, Moscow, Nauka, 232 p.

59. Smirnov, A. S. and Smolnikov, B. A. 2017, “Resonance oscillations control of the non-linear mechanical systems based on the principles of biodynamics”, Mashinostroenie i inzhenernoe obrazovanie, no. 4, pp. 11-19.

60. Usvitsky, I. 1986, “Mechanics convenient to Mechanisms”, Znanie – sila, no. 6.

61. Dolginov, A. I. 1957, Resonance in electrical circuits and systems, Moscow, Leningrad, Gos. energ. izd-vo, 328 p.


Review

For citations:


Smirnov A.S., Smolnikov B.A. The history of mechanical resonance – from initial studies to autoresonance. Chebyshevskii Sbornik. 2022;23(1):269-292. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-269-292

Views: 575


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)